If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15m^2+14m-8=0
a = 15; b = 14; c = -8;
Δ = b2-4ac
Δ = 142-4·15·(-8)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-26}{2*15}=\frac{-40}{30} =-1+1/3 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+26}{2*15}=\frac{12}{30} =2/5 $
| 1+3(-5z-3)=-5(5z+)+3 | | 0.22(x+6)=0.2x+2.9 | | -18-(3-4x)=-41 | | 2(1+5x)=52 | | 8/36=2n | | X^-6x+9=0 | | 28-9x+13x=24 | | 49÷k=7 | | 7a(3a-5)=13 | | (2/3)m+(5/4)m-m=(11/12)m | | 6z−7/5z=3 | | 108=2w+2(3w+4) | | 4(5x-1)-11x=-13 | | 49➗k=7 | | 8x+7=3(x-2)-9 | | 4(3k-3)=-72 | | 5(9-2y)+4=9 | | 4x^2−8x+4=1 | | 4x2−8x+4=1 | | 36=5d | | y÷6=8 | | 6p+-4p-p=-3 | | (2x-3/3)-7=4 | | 1/3z+7=-5 | | 2b+6+b+7=16 | | 12x=28x+20 | | 17x-9(x+3)=3x-26 | | 3x=1=9 | | 2(b+2)=10 | | 13^2=5^2+2*24*s | | 33x−18=180 | | 7.5s+35s+2s=122 |